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Path-integral formulation of stochastic processes for exclusive particle systems
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We present a systematic formalism to derive a path-integral formulation for hard-core particle systems far
from equilibrium. Writing the master equation for a stochastic process of the system in terms of the annihila-
tion and creation operators with mixed commutation relations, we find the Kramers-Moyal coefficients for the
corresponding Fokker-Planck equatidfPE), and the stochastic differential equatiG®DE) is derived by
connecting these coefficients in the FPE to those in the SDE. Finally, the SDE is mapped onto field theory
using the path integral, giving the field-theoretic action, which may be analyzed by the renormalization group
method. We apply this formalism to a two-species reaction-diffusion system with drift, finding a universal
decay exponent for the long-time behavior of the average concentration of particles in arbitrary dimension.

PACS numbse(s): 82.20.Db, 05.40-a, 05.70.Ln, 82.20.Mj

In recent years, nonequilibrium phenomena such as norirard-core property of the particles is important and the
equilibrium phase transitions, bifurcations, and synergetic®osonic approach fails. In response to these challenges, there
have attracted much attentiph], not only because of their have been many attempts to take the hard-core property into
connections to a variety of important physical problgmet-  account. Brunekt al. [12] and Bares and Mobilil3] for-
tern formation, morphogenesis, self-organization,)etout  mulated fermionic field theories for a single-species reaction-
also because of the analytic challenge due to lack of a gerdiffusion process confined to one space dimension. However,
eral formalism for nonequilibrium systems, in contrast tothese fermionic field theories are very hard to extend in prac-
equilibrium statistical mechanics, which has well-establishedice to higher spatial dimensions or to multispecies pro-
concepts and tools. In pursuit of a general formalism, statiseesses.
tical physicists have investigated nonequilibrium phase tran- We have focused on extending field theory to multispe-
sitions in lattice models over the last decd@é As lattice  cjes processes and to higher spatial dimensions including the
models have played a central role in equilibrium statisticalard-core exclusion property of particles. In this paper, we
mechanics, they will also be important in nonequilibrium yesent a systematic formalism to derive the field theory for
statistical mechanics. In particular, theoretical analysis Oﬁard-core particles and apply this method to a two-species

reaction-diffusion systems where both diffusion and reactiony e, reaction-diffusion(DRD) system in arbitrary spatial
take place on the lattice is relevant to the understanding of 8imension. In the two-species DRD system, each particle

wide class of nonequilibrium phenomena in nag8k It has attempts moves to the right and to the left with different

long been recognized that the mean-field rate equations a & oping rates. and the attemot is successful only if the par-
not applicable to reaction-diffusion systems in low dimen- ppIng ' P y P

sions. After Doi, Grassberger and Scheunert, and Peliti introt-',Cle lands on an unoccupied site. If the particle lands on a

duced the field-theoretic method using the bosonic cohererfit Occupied by a same-species particle, the hopping attempt
state path integrd#]. Lee and Cardy, using the renormaliza- 'S réjected, but if it lands on a site occupied by an opposite-
tion group (RG) approach, have improved on this method SPecies particle, thA+|3—>(Z) reaction occurs and both par-
[5,6] in the description of the anomalous kinetics in theseficles disappear. For this system, one might expect the long-
systems. Assuming the systems are in the low density reime kinetics to be the same as that Af-B—0 with
gime, Lee and Cardy rewrite the master equation for thdsotropic diffusion, by a Galilean transformation, and the
Markov process as the bosonktamiltonian The Hamil-  density should decay in time &s%“ for d<4 and ag ~* for
tonian in turn can be mapped onto field theory and analyzed=4. However, some extensive numerical simulations by
by the renormalization group method in arbitrary dimen-Janowsky 9] and Ispolatowet al.[10] indicate that the den-
sions. For simple models such As-rA—0 and A+B—0, sity decays ag~Y® asymptotically in one dimension, and
this bosonic field-theoretic method provided the correct timeothers by ben-Avraharet al. [14] are inconclusive concern-
dependence for the density decay in low dimensi&rs3]. ing the exponent of the density decay. Consequently, to

Despite the successes achieved by the bosonic field theosgudy this system analytically, the hard-core property of the
for reaction-diffusion systems, there are still many openparticles should be incorporated properly into the field
problems. Driven reaction-diffusion systerf&,10], multi-  theory. Our general formalism provides a systematic method
species adsorption modeJ41], and epidemic models are to derive the field theory for this system and with the appli-
some examples to which the bosonic field theory cannot beation of the renormalization group derives the long-time
applied since the steady states of these systems cannot behavior as predicted by Janowsky and Ispolabal. for
assumed to be in a low density regime. In these systems, thdensity decay as ' in one dimension.
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In general, the dynamics of a stochastic particle system ifor any 8, we eliminate all the creation operators in ES§),
described by a master equation governing the time evolutioand any annihilation operator can be interpreted as a number
of the probability P(C;t) for the system to be in a given operator becausg |a’af=(.|(1-=,a%)af=(-|a’.
microscopic configuratiorC at time t. For a multispecies Since the Kramers-Moyal coefficiens", cﬁﬁ in the
reaction-diffusion system with hard-core particles, the micro+okker-Planck equation
scopic configuratiol is represented by the set of the particle
2

numbers of each species at each lattice gite{n{"} where P 9 J
the greek index» stands for the particle species, the latin ~ —-=——_[C{({p})P]+ 5 — S[CiP {phP] (1)
index i runs over all lattice sites in arbitrary spatial dimen- api 9pi 9p;

sion, andn;" is restricted to 0 or 1. Introducing the annihila-
tion and creation operators satisfying the mixed commutatio
relations

are related to the time evolution of the one-point and two-
riBoint correlation functions of the number operator

d d
qilen=(Ch, Guleief)=(picf+pfCi+Ci),

8

[aia,a]_BT]:[aia,ajG]:[aiaT ,ajﬂT]:O for i#j, (2) we find the Kramers-Moyal coefficients in terms of the an-
nihilation and creation operatof46]

{ai",ai‘”}zl—g a’’a?, a‘af=a*"af'=0, (1)
vEa

and defining the state vectpl ;t)=>.P(C;t)|C), the master o _ at @By _ /faatae 1.

equation can be written as a Schimger-like equatiori15], (CY=(r.aal]), (Cif)=(la"a".[H.a]"a) ]]>’(9

by interpreting the number operator as a density of particles.
Next we consider how we write down the stochastic dif-

ferential equation when the Fokker-Planck equation is

where 1 is an evolution operator, often called a Hamil- known. Recalling the reverse problem, a stochastic differen-

tonian, expressed in terms afs anda's. The formal solu-  tidl equation

tion for the initial condition|¥;0) is, straightforwardly, o iw wp p

|W:t)=e""|¥;0), and the average of any quantitynay be pi=h{phH+gi"{phH & (V) (10)

expressed as

J
Vi =—HY:t), €)

with (&7(t) €°(t"))= 6*#5; 5(t—t") can be connected to the
R Fokker-Planck equation with the coefficient functions
(f(0)=2 fdnfHPUnLn=( [fe ™W¥;0), @  cf({p})=h® and CiP({ph =079k in the Itd interpreta-
{n tion [17].
Representing the stochastic differential equation in the
where(-| is the projection state defined as the sum of allpath-integral formulation, the generating functiodadf cor-

possible microscopic states, i.&;|=Zna({n{}[. For a relation functions can be written &= [ DpDpe~ S with the
given observabld({n®}), we find the corresponding opera- action[18]

tor f by replacing the variables® by the operatoai‘“r a. In 1

wha_t follows, we f,hall 1Lbe malnly mterested !n averages of s:f dt(pi(t)(&tpi(t)—ci)— Epi(t)pj(t)cij . (1D
particle numbers f=a"' &) at sitei and their two-point

correlation functions {=a;"" af*af"a’). The time derivative

of Eq. (4) is formally found to be The response fiel¢ has been introduced as the conjugate

field to the Langevin force. After performing a suitable con-
q tinuum limit for the action, we obtain the continuum field
o T _ 2 description for microscopic discrete models. Thus, by map-
dt<f(t)> (TR =(H1D), ® ping the stochastic differential equation derived from the
Fokker-Planck equation into the path-integral formalism, we
where we used the probability conservation conditjof# obtain a field-theoretic action describing the stochastic pro-
=0. Since the Hamiltonian describes a stochastic process, #£SS, Which in turn may be examined by RG analysis.
generalX is not Hermitian. Thus|[,f] will have creation Nov'va\weh apply g.ur formalism t? reactlon-d'lgfu&%n Sys-
and annihilation operators that do not form number operatems' s the paradigmatic example, we consider the asym-

L . ~ metric diffusion process withA+B—0 reaction in
tors. However, the projection state| acting on[H,f] P =

; : . . d-dimensional space. The diffusion constant for A(B)
makes it possible to express the right-hand side of (Bj. Ca e MA/NB . o
only with number operators. Using the identity from the particle isD (D) and along the direction of the driving

s force (say, the “parallel” direction the diffusion is asym-
property of the projection stafd6] metric with the drift ratev 5/2 (vg/2) for an A(B) particle.
The reaction occurs with rate/2d when two different spe-
—(| 6) cies occupy the nearest neighbor sites im-dimensional
hypercubic lattice. The Hamiltonian generating the time evo-

(-

a1+ ar
o
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lution of the system is found to bé{:E,;[Hg"Jngr

+H:;e] with (éi is the unit vector along the directian

d
dif At To. -
Hy =—i21 [DA(anaﬁ+éi+aﬁan+ei)
B FIG. 1. The one-loop diagrams contributing to the renormaliza-
Tt LT tion of (left) Dy and(right) M. The legs with the outgoing arrow
+DP (bsby, 5 +bibiss)] (o) Dy andlrigno Ty The leg - ouigoma ar
i : are for the response fields(B) and the legs with the incoming
arrow for the density fields«,8). The bar denotes spatial differ-

d Ua t t Ug t t entiation and the dot aM vertex.
Hy == 7 (@5, s ~agdig) — 5 (biby. o —brbiig),
We use the Wilson RG method to analyze the long-time
N kinetics of the action. The flow equationsdrs-2— & dimen-
H%e: ~ g Zﬁ (arbrse +branie), (120  sions, to one-loop order, are
dD, dMm,
where we left out the diagonal terms because they give no T:(Z_Z)DL ' T:(Z_Z)ML '
contribution to the commutation relations. Following the
steps given above, we find the field-theoretic action for the dD, Dy M|
system after taking the continuum limit: W:(Z_Z)DW B 3+ D, g,
szf dt d%| a(d,— DAV?)a+b(3,— DBV?)b dm, My My D) "
W—(Z—Z)MH-F E( D—|+2+3M—”),
—2vpa(pm—a—b)dja—2vgb(pm—a—b)ab
e e ” i\ _ N dw_( . d
+MA(Va)2a(p,—a—b)+MBE(Vb)?b(p,—a—b) o7~ (2=d) +m, qr=|z7 15w,
+ %[2(5+B)—(5+B)2] ab (13  whereg=v%/47D{”D}"*. The Feynman diagrams that con-

tribute to these equations are shown in Figs. 1 and 2.

. N . The dynamical exponent is given [»=2, leavingD
in terms of the density fieldsa(b) of each species and the andM, unchanged under the RG flow. The flow equétions

conjugate response fields,p). The hard-core property of for Dy and M have the same contribution and the ratio
particles is manifest in the action apﬁl, is the density cutoff D”/M” remains Constant:€ 1) The reaction rat® is renor-
due to the hard-core property. Since the densities are renalized only by the\ terms, not the drift term. Combining
stricted toa,b=0, we shift the fields byx=2a-pn, B the flow equations foD,, Dy, andv, we find the flow
=2b—pn, a=a—1, andB=b—1, in order to apply a per- equation for the expansion parameger

turbative RG analysis. Skipping all the irrelevant terms, we

get the reduced action ding =(2—d)— Eg. (16)
dl 4
> ~ - v -
s:f dt dx( a(d;—DV?)a+ B(o,—DV?)B— Eazé’ua For d>d.=2 we find an infrared stable fixed poigt =0,

and in a region of attractiod; andM remain constant. The
scaling form of the average concentration/fand B par-

v ~ ~ ~ ~ ~
~3B*B+ MaViat MBY?p ticles [c(t) =ca(t)=cs(t)] [7]

1/2

No()
8a7D)(/) YD (/)@ V()P

—%[<E+73>2 c(t)y=e"

~ ~ (17)
+2(a+tB)(pmt a@)(pm+t B) (14

in the case oD*=DB=D, vpy=vg=v, andMA=MB=M

with D(M)VZ=Dy(M))Vf+D,(M,)Vi. From power

counting with shifted fields, we find the upper critical dimen-

siond.=2. The scaling dimension of the coupling constant

v indicates that the drift term is effective only for fewer than

two dimensions, and fail=2 the action becomes equivalent

to the action derived by Lee and Cardy using the bosonic

approach for the symmetric reaction-diffusion systém B FIG. 2. The one-loop diagrams contributing to the renormaliza-
— 0 without drift. tion of v. These two diagrams cancel each other.
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gives c(t)~t~9* using the time flow equationt(/)

/
=te {0 %9 Below the critical dimensiod,, there exists
a nontrivial infrared stable fixed point gt =4/3¢, and near
this pointD; and M flow ase®*’®. Thus, the average con-
centration behaves as

diffusion system with drift. Following straightforward steps
to obtain the action and applying the momentum-shell RG
method, we have calculated the long-time behavior for the
average concentration of particles. Power counting shows
that the upper critical dimension &.=2, and the drift term
affects the RG flow only for fewer than two dimensions.
Thus, ford=2, the hard-core action behaves the same as the
bosonic action derived by Lee and Cardy. The average con-

In summary, we have presented a systematic formalism tQ

; =1 —d/a :
derive the field-theoretic action for systems of hard-core pargentratlon behaves 45" for d=4 andt for 4=d=2 in

ticles. Starting from the master equation for a stochastic prot-he long-time limits. Below the critical dimension, the drift

cess of the system, we have constructed the Fokker-Plandk'™ moves the stable fixed point to the +I’110/I2tI‘IVIa| one and

equation by introducing annihilation and creation operatordh® average concentration behavesta&™* V' for d=2.

with mixed commutation relations. This Fokker-Planck These results agree with the simulation results by Janowsky

equation is connected to the stochastic differential equatiob®] and the scaling arguments by Ispolaval. [10].

by identifying the coefficient functions in the’liaterpreta- As mentioned before, our formalism has merit in exten-

tion. Finally, the stochastic differential equation is mappedsion to multispecies and to higher spatial dimensions. Also, it

onto field theory using the path integral, giving the field-is necessary to use this formalism, not the bosonic formal-

theoretic action to be analyzed by the RG method. ism, when the system has nonvanishing concentrations in the
Although there have been many attempts to incorporatgteady states. The three-species reaction-diffusion system

the hard-core property of particles into field theory, our for-[12] and some other systems having nonvanishing steady

malism has a very important advantage over other attemptgiates are under investigation using this formalism.
Our formalism can be applied to multispecies systems in

arbitrary spatial dimension. As a paradigmatic example, we This research was supported by the KOSEF through Grant

c(t)~t(@d+1r6, (18)

have applied our formalism to thé&+B—0 reaction-
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